Association of Human T Lymphotrophic Virus 1 Amplification of Periodontitis Severity with Altered Cytokine Expression in Response to a Standard Periodontopathogen Infection

Gustavo Pompermaier Garlet, Silvana Pereira Giozza, Elcia Maria Silveira, Marcela Claudino, Silvane Braga Santos, Mario Julio Avila-Campos, Walter Martins, Jr, Cristina Ribeiro Cardoso, Ana Paula Favaro Trombone, Ana Paula Campanelli, Edgar Marcelino Carvalho, and João Santana Silva

1Department of Biological Sciences, School of Dentistry of Bauru, and 2Department of Microbiology, Institute of Biomedical Sciences, São Paulo University, São Paulo, 3Serviço de Imunologia, Hospital Universitário Professor Edgar Santos, Universidade Federal da Bahia, Salvador, 4Department of Periodontics, Dentistry School of University of Ribeirão Preto, and 5Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, São Paulo University, Ribeirão Preto, and 6Department of Biological Sciences, Federal University of Triângulo Mineiro, Triângulo Mineiro, Brazil

Background. Periodontal diseases (PDs) are infectious diseases in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction. Recently, viruses have been implicated in the pathogenesis of PDs. Individuals infected with human T lymphotropic virus 1 (HTLV-1) present with abnormal oral health and a marked increased prevalence of periodontal disease.

Methods. In this study, we investigated the patterns of periodontopathogen infection and local inflammatory immune markers in HTLV-1–seropositive individuals with chronic periodontitis (CP/HTLV-1 group) compared with HTLV-1–seronegative individuals with chronic periodontitis (CP group) and periodontally healthy, HTLV-1–seronegative individuals (control group).

Results. Patients in the CP/HTLV-1 group had significantly higher values of bleeding on probing, mean probing depth, and attachment loss than patients in the CP group. The expression of tumor necrosis factor alpha (TNF-α) and interleukin (IL) 4 was found to be similar in the CP and CP/HTLV-1 groups, whereas IL-12 and IL-17 levels trended toward a higher expression in the CP/HTLV-1 group. A significant increase was seen in the levels of IL-1β and interferon γ in the CP/HTLV-1 group compared with the CP group, whereas expression of the regulatory T cell marker FOXP3 and IL-10 was significantly decreased in the lesions from the CP/HTLV-1 group. Interestingly, similar frequency and/or load of periodontopathogens (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans) and frequency of viruses (herpes simplex virus 1, human cytomegalovirus, and Epstein-Barr virus) characteristically associated with PDs were found in the CP/HTLV and CP groups.

Conclusions. HTLV-1 may play a critical role in the pathogenesis of periodontal disease through the deregulation of the local cytokine network, resulting in an exacerbated response against a standard periodontopathogen infection.

Periodontal diseases (PDs) are infectious diseases in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction [1, 2]. The presence of multiple gram-negative species in the subgingival biofilm triggers a robust pro-inflammatory reaction, which involves cytokines such as tumor necrosis factor α (TNF-α) and interleukin (IL) 1β, associated with disease progression [1, 2]. Conversely, anti-inflammatory cytokines, such as IL-10, are also expressed in diseased periodontal tissues and can counteract the effect of proinflammatory mediators [3]. TH1 cytokines also can interfere in the progression of periodontal lesions, potentiating (Th1 and Th17) or attenuating (Th2 and T regulatory [Treg] cells) the local host response [4–7]. Therefore, the overall proinflammatory and anti-inflammatory balance is supposed to regulate the balance of the matrix metalloproteinases.
and their endogenous inhibitors, which are involved in the degradation of connective tissue, and the receptor activator of NF-κB ligand and osteoprotegerin (as the key molecular regulation system for bone remodeling, where the receptor activator of NF-κB ligand is the main stimulatory factor for the differentiation and activation of osteoclasts, counteracted by osteoprotegerin) and consequently determine the progressive or stable nature of the lesions [8, 9].

However, the etiology of PD is complex, involving several local and systemic factors that can interfere in the control of proinflammatory and anti-inflammatory balance in the periodontal environment. Highly virulent periodontopathogens, such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans, are especially associated with higher disease severity and also with systemic infectious and inflammatory complication conditions associated with PD [1, 10–12]. Functional single-nucleotide polymorphisms that effectively regulate cytokine gene transcription are also described to present a small but significant role in the determination of PD outcome [13, 14]. Finally, modifying factors, such as diabetes mellitus, were also described to modify the nature of the host response, increasing the strength of the proinflammatory reaction and determining increased disease severity [1, 12].

Recently, different viruses have been implicated in the pathogenesis of PD [15, 16]. Herpes viruses are frequently found in periodontal pockets and may initiate or accelerate periodontal tissue destruction because of a virally mediated release of cytokines or even an impairment of the periodontal defense, resulting in a heightened virulence of resident pathogenic bacteria [15, 17–19]. Human cytomegalovirus (HCMV), also frequently found in periodontal lesions, may contribute to disease progression through the activation of IL1B gene transcription [20].

Interferences in the cytokine transcription are also characterized as associated with human T lymphotropic virus 1 (HTLV-1) infection, an exogenous human retrovirus that infects 10 million to 20 million people worldwide [21]. HTLV-1 infection has also been associated with an increase in CD4 T cells expressing Tax, an increase in CD8 T cells expressing TNF-α and interferon γ (IFN-γ), and high levels of CXCL9 and CXCL10 chemokines, associated with IFN-γ production and recruitment of T cells to the site of inflammation [22]. Deregulated immune response due to HTLV-1 infection is associated with adult T cell leukemia and chronic progressive disease of the central nervous system termed HTLV-1–associated myelopathy (HAM)/tropical spastic paraparesis (TSP) [21] and also with T lymphocytic alveolitis, polymyositis, arthritis, uveitis, and sicca syndrome [23]. Indeed, the marked production of TNF-α and proinflammatory cytokines and the expansion of autoreactive T cells observed in HTLV-1–infected patients are in part due to the lack of regulatory T cell function and decreased ability of IL-10 and transforming growth factor β to downmodulate immune response [2, 24–28].

Therefore, HTLV-1 infection can be considered a potential modifying factor in the pathogenesis of PD. Indeed, recent studies demonstrate that abnormal oral health is a common feature in HTLV-1–seropositive patients and that such patients have a marked increased prevalence of PD [29, 30]. In this study, we investigated the patterns of periodontopathogen infection and local inflammatory immune markers in chronic periodontitis (CP), HTLV-1–seropositive, HAM/TSP symptomatic individuals (CP/HTLV group) compared with HTLV-1–seronegative individuals presenting with CP (CP group), or periodontally healthy individuals (control group). Herein, we show that HTLV-1 may play a critical role in the pathogenesis of PD through the deregulation of the local cytokine network, resulting in an exacerbated response against standard periodontopathogen infection.

| Table 1. Clinical Features of the Control, Chronic Periodontitis (CP), and CP/Human T Lymphotropic Virus (HTLV) Groups |

<table>
<thead>
<tr>
<th>Feature</th>
<th>Control group (n = 42)</th>
<th>CP group (n = 64)</th>
<th>CP/HTLV group (n = 36)</th>
<th>P^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), years</td>
<td>42.3 (7.61)</td>
<td>48.6 (8.40)</td>
<td>49.6 (8.11)</td>
<td>.56</td>
</tr>
<tr>
<td>Plaque index, mean (SD)</td>
<td>0.3 (0.4)</td>
<td>1.4 (1.1)</td>
<td>1.4 (0.9)</td>
<td>.62</td>
</tr>
<tr>
<td>BOP, mean (SD), %</td>
<td>5.18 (1.63)</td>
<td>63.58 (12.41)</td>
<td>69.71 (10.66)</td>
<td>.01</td>
</tr>
<tr>
<td>Probing depth, mean (SD), mm</td>
<td>2.17 (0.65)</td>
<td>4.22 (0.73)</td>
<td>4.85 (0.93)</td>
<td>.001</td>
</tr>
<tr>
<td>Probing depth at site, mean (SD), mm</td>
<td>2.24 (0.54)</td>
<td>7.05 (1.16)</td>
<td>7.12 (1.31)</td>
<td>.78</td>
</tr>
<tr>
<td>Attachment loss at site, mean (SD), mm</td>
<td>0</td>
<td>3.94 (1.12)</td>
<td>4.64 (1.65)</td>
<td>.01</td>
</tr>
</tbody>
</table>

Note. BOP, bleeding on probe; CP, chronic periodontitis; HTLV-1, human T lymphotropic virus 1.

a All clinical parameters of the control group are statistically different from the CP and CP/HTLV-1 groups (P<.001).

b P values for the CP group vs the CP/HTLV-1 group.

c Fisher exact test.

d Unpaired t test.
Figure 1. Exacerbated cytokine expression in periodontal lesions from patients infected with human T lymphotropic virus 1 (HTLV-1). Total RNA from gingival samples of control subjects, patients with chronic periodontitis (CP), and HTLV-1–positive patients with CP (CP/HTLV) was extracted, and levels of interleukin (IL) 1β, tumor necrosis factor α (TNF-α), interferon γ (IFN-γ), IL-12, IL-4, and IL-17 messenger RNA (mRNA) were measured quantitatively with real-time polymerase chain reaction (SYBR Green System). The results are presented as the fold increase of expression of the individual mRNAs, with normalization with the target internal control β-actin using the cycle threshold method. * for the control group versus CP and CP/HTLV groups; ** for the CP group versus CP/HTLV group (analysis of variance, followed by the Tukey test).

PATIENTS AND METHODS

Study population and clinical examination. This cross-sectional study contained 36 patients in the CP/HTLV group, 64 patients in the CP group, and 42 healthy controls. Patients and controls scheduled for treatment at the Dentistry School of University of Ribeirão Preto and Hospital Universitário Professor Edgar Santos had their histories taken and underwent clinical and periodontal examination. Before the beginning of the study, all individuals signed a consent form that was approved by an institutional review board.

The diagnosis of PD was made according to the American Academy of Periodontology, as previously described [3, 31]: patients were scored for bleeding on probing (BOP), probing depth, and clinical attachment loss (CAL) and then were placed into the CP/HTLV, CP, or control group [3, 31]. After the diagnostic phase, CP patients (n = 64) who presented with moderate to advanced PD (≥1 tooth per sextant with a probing depth ≥6 mm and a CAL ≥3 mm) received basic periodontal therapy. Biopsy specimens of gingival tissue (1 sample from each patient) were obtained during surgical therapy of the sites that exhibited no improvement in clinical condition (ie, persistent bleeding on probing and higher probing depth) 3–4 weeks after the basic periodontal therapy, as previously described [31]. The control group (n = 42) was composed of individuals who presented with clinically healthy gingival tissues (<10% of BOP; no sites with a probing depth ≥3 mm or CAL) scheduled to undergo surgical procedures for restorative or prosthetic reasons. During these procedures, biopsy specimens of healthy gingival tissue (no BOP and a probing depth <3 mm) were taken. The clinical features of the groups are summarized in Table 1.

The diagnoses of HTLV-1 infection and HAM/TSP were made according to World Health Organization guidelines, as previously described [29–32]. Clinical features of HTLV-1–symptomatic HAM/TSP infection include muscle weakness in the legs, hyperreflexia, clonus, extensor plantar responses, sensory disturbances, urinary incontinence, impotence, and low back pain [29, 30]. Diagnosis of HTLV-1 infection was performed by enzyme-linked immunosorbent assay (Cambridge Biotech) and confirmed by Western blot analysis (HTLV blot 2.4; Genelab) [29, 30]. After HTLV-1 infection and HAM/TSP diagnosis, the patients were categorized into a seropositive and symptomatic group (CP/HTLV group, n = 36) or characterized as seronegative (n = 106, including the 64 patients in the CP group and the 42 individuals in the control group). Excluded from the study were patients who did not give informed consent, patients with a significant medical history indicating evidence of known systemic modifiers of PD (including human
immunodeficiency virus and diabetes mellitus), or those who had undergone periodontal therapy in the previous 2 years, as previously described [31]. Smokers were specifically excluded.

Real-time polymerase chain reactions. Real-time polymerase chain reactions (PCRs) were used to quantify cytokine expression in periodontal tissue samples and to detect and quantify the target pathogens in periodontal biofilm samples. The extraction of total RNA from periodontal tissues samples, performed with Trizol reagent (Invitrogen), and the complementary DNA synthesis were accomplished as previously described [13]. To allow the detection of *P. gingivalis*, *T. forsythia*, *T. denticola*, and *A. actinomycetemcomitans*, and also herpes simplex virus 1 (HSV-1), human cytomegalovirus (HCMV), and Epstein-Barr virus (EBV), periodontal crevice or pocket biofilm samples were collected with sterile paper point ISO No. 40 from the same site biopsied previously to the surgical procedure [33]. Bacterial DNAs were extracted from plaque samples with a DNA Purification System (Promega) [3]. Real-time PCR messenger RNA or DNA analyses were performed in an MiniOpticon system (BioRad), using SybrGreen MasterMix (Invitrogen), specific primers, and 2.5 ng of complementary DNA or 5 ng of DNA in each reaction, as previously described [4, 14]. For messenger RNA analysis, the relative level of gene expression was calculated in reference to β-actin using the cycle threshold method. Positivity to HSV-1, HCMV, and EBV, periodontal crevice or pocket biofilm samples was assessed by statistical analysis.

Statistical analysis. The significance of the differences in observed frequencies of periodontopathogens was assessed by the χ² test. The possible differences between the genotype subgroups of the control and CP subgroups were evaluated by analysis of variance, followed by the Tukey test. *P < .05* was considered statistically significant.

RESULTS

PD parameters in HTLV-1-seropositive and HTLV-1-seronegative patients. The study sample was similarly composed of male and female patients (Table 1), and as expected, the clinical parameters of periodontitis severity are strikingly lower (*P < .001*, for all parameters tested) in the control group. When comparing the CP group with the CP/HTLV group, similar scores of plaque index (*P = .62*) and probing depth (*P = .78*) of the biopsied sites were found, whereas the CP/HTLV group was found to have significantly higher values of BOP (*P = .01*), mean probing depth (*P < .001*), and attachment loss (*P < .001*) than patients in the CP group.

Cytokine messenger RNA expression pattern in periodontal lesions. Because cytokine patterns expressed in the periodontal lesions are thought to determine or influence disease outcome, we next investigated the possible interference of HTLV-1 infection in the cytokine milieu (Figure 1). In accordance with previous studies, cytokine expression in the control group was found to be strikingly lower than in diseased tissues. The expression of TNF-α and IL-4 was found to be similar (*P > .05*) in the CP and CP/HTLV groups, whereas IL-12 and IL-17 levels present a trend (nonstatistically significant, *P > .05*) toward a higher expression in the CP/HTLV group. Our results also demonstrate a significant increase in the levels of IL-1β expression in periodontal tissue samples and to detect and quantify the target pathogens in periodontal biofilm samples. The extraction of total RNA from periodontal tissues samples, performed with Trizol reagent (Invitrogen), and the complementary DNA synthesis were accomplished as previously described [13]. To allow the detection of *P. gingivalis*, *T. forsythia*, *T. denticola*, and *A. actinomycetemcomitans*, and also herpes simplex virus 1 (HSV-1), human cytomegalovirus (HCMV), and Epstein-Barr virus (EBV), periodontal crevice or pocket biofilm samples were collected with sterile paper point ISO No. 40 from the same site biopsied previously to the surgical procedure [33]. Bacterial DNAs were extracted from plaque samples with a DNA Purification System (Promega) [3]. Real-time PCR messenger RNA or DNA analyses were performed in an MiniOpticon system (BioRad), using SybrGreen MasterMix (Invitrogen), specific primers, and 2.5 ng of complementary DNA or 5 ng of DNA in each reaction, as previously described [4, 14]. For messenger RNA analysis, the relative level of gene expression was calculated in reference to β-actin using the cycle threshold method. Positivity to HSV-1, HCMV, and EBV, periodontal crevice or pocket biofilm samples was assessed by statistical analysis.

Statistical analysis. The significance of the differences in observed frequencies of periodontopathogens was assessed by the χ² test. The possible differences between the genotype subgroups of the control and CP subgroups were evaluated by analysis of variance, followed by the Tukey test. *P < .05* was considered statistically significant.

RESULTS

PD parameters in HTLV-1-seropositive and HTLV-1-seronegative patients. The study sample was similarly composed of male and female patients (Table 1), and as expected, the clinical parameters of periodontitis severity are strikingly lower (*P < .001*, for all parameters tested) in the control group. When comparing the CP group with the CP/HTLV group, similar scores of plaque index (*P = .62*) and probing depth (*P = .78*) of the biopsied sites were found, whereas the CP/HTLV group was found to have significantly higher values of BOP (*P = .01*), mean probing depth (*P < .001*), and attachment loss (*P < .01*) than patients in the CP group.

Cytokine messenger RNA expression pattern in periodontal lesions. Because cytokine patterns expressed in the periodontal lesions are thought to determine or influence disease outcome, we next investigated the possible interference of HTLV-1 infection in the cytokine milieu (Figure 1). In accordance with previous studies, cytokine expression in the control group was found to be strikingly lower than in diseased tissues. The expression of TNF-α and IL-4 was found to be similar (*P > .05*) in the CP and CP/HTLV groups, whereas IL-12 and IL-17 levels present a trend (nonstatistically significant, *P > .05*) toward a higher expression in the CP/HTLV group. Our results also demonstrate a significant increase in the levels of IL-1β.
(P<.05) and IFN-γ (P<.05) in the lesions from the CP/HTLV-1 group when compared with the CP patients. When cytokine levels from the HTLV lesions were compared with an age-, sex-, and clinically matched CP subgroup, similar results to the comparison with the whole group were found (data not shown).

Quantitative analysis of Treg marker expression. Because HTLV-1 was described to interfere with Treg networks, we next investigated the expression of Treg markers in periodontal lesions (Figure 2). As previously described, the expression of Treg markers was found to be significantly higher in diseased than in healthy tissues (P<.001, for all markers analyzed). When comparing the CP and CP/HTLV groups, we found that the expression of FOXP3, the transcription factor essential for Treg development and function, was notably decreased (P<.05) in the lesions from the CP/HTLV group. Similarly, the expression of IL-10 was also found to be lower (P<.05) in the CP/HTLV lesions compared to an age-, sex-, and clinically matched CP subgroup, similar results to the comparison with the whole group were found (data not shown).

Table 2. Frequencies of Microbial Detection in the Control, Chronic Periodontitis (CP), and CP/Human T Lymphotrophic Virus (HTLV) Groups

<table>
<thead>
<tr>
<th>Microbial parameters</th>
<th>Control group, no. (%)</th>
<th>CP group, no. (%)</th>
<th>CP/HTLV group, no. (%)</th>
<th>CP vs CP/HTLV P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porphyromonas gingivalis</td>
<td>5 (11.9)</td>
<td>42 (65.22)</td>
<td>22 (60.94)</td>
<td>.67</td>
</tr>
<tr>
<td>Treponema denticola</td>
<td>4 (9.52)</td>
<td>39 (60.84)</td>
<td>19 (52.63)</td>
<td>.53</td>
</tr>
<tr>
<td>Tannerella forsythia</td>
<td>4 (9.52)</td>
<td>37 (53.04)</td>
<td>18 (49.86)</td>
<td>.53</td>
</tr>
<tr>
<td>Aggregatibacter actinomycetemcomitans</td>
<td>1 (2.38)</td>
<td>11 (17.16)</td>
<td>5 (13.85)</td>
<td>.78</td>
</tr>
<tr>
<td>HSV-1</td>
<td>3 (7.14)</td>
<td>29 (45.24)</td>
<td>15 (41.55)</td>
<td>.83</td>
</tr>
<tr>
<td>HCMV</td>
<td>2 (4.76)</td>
<td>36 (56.16)</td>
<td>18 (49.55)</td>
<td>.68</td>
</tr>
<tr>
<td>EBV</td>
<td>3 (7.14)</td>
<td>29 (45.24)</td>
<td>16 (44.32)</td>
<td>>.99</td>
</tr>
<tr>
<td>HTLV-1</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>36 (100)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Note. EBV, Epstein-Barr virus; HCMV, human cytomegalovirus; HSV-1, herpes simplex virus 1.

* P<.05, Fisher exact test.

Therefore, to investigate the putative mechanisms by which HTLV-1 infection can modify the pathophysiology of osteoarthritis (a condition that shares several characteristics with PD, such as the chronic nature of the inflammatory reaction associated with bone resorption activity) by increasing the inflammatory activity in a subset of carrier patients but does not necessarily worsen the clinical outcome and local synovitis [35].

DISCUSSION

PDs are infectious diseases in which the chronic inflammatory immune responses raised against periodontopathogens lead to tissue destruction. In this scenario, the balance between pro-inflammatory (TNF-α and IL-1β), Th1, and Th17 cytokines versus anti-inflammatory and Th2 cytokines is supposed to determine PD outcome. Interferences in the patterns of host response are characteristically associated with HTLV-1 infection, which recently was demonstrated to be associated with increased prevalence of PD [34]. In accordance, our data demonstrate that HTLV-1–positive patients had higher scores of the clinical parameters of disease severity. Accordingly, HTLV-1 infection is characteristically associated with a systemic immune–mediated inflammatory disease that results in tissue damage [21, 24, 30]. Interestingly, HTLV-1 infection can modify the pathophysiology of osteoarthritis (a condition that shares several characteristics with PD, such as the chronic nature of the inflammatory reaction associated with bone resorption activity) by increasing the inflammatory activity in a subset of carrier patients but does not necessarily worsen the clinical outcome and local synovitis [35].
HTLV-1 could increase periodontitis severity, we initially investigated the pattern of cytokine expression in the lesions. Although similar levels of TNF-α and IL-4 were found in the samples from both the CP and HTLV-1 groups, lesions from HTLV-1–positive patients presented a trend toward a higher IL-12 and IL-17 expression. In addition, the CP/HTLV group was found to have significantly higher levels of IL-1β and IFN-γ than the CP patients. Accordingly, HTLV-1 infection is characterized by spontaneous proliferation of CD4+ lymphocytes that harbor a provirus, promoting an active expansion of infected T cells and leading to systemic and abundant secretion of cytokines, such as IFN-γ, TNF-α, and IL-6 [24, 28, 36]. In HTLV-1–associated tissue damage, a proinflammatory microenvironment is the hallmark of the immunologic profile, with increased levels of IFN-γ, TNF-α, and IL-6 a common finding [24, 28]. Interestingly, a similar skew toward a predominant proinflammatory Th1-type response is verified in aggressive periodontitis, and a PD form is characterized by early onset and increased severity [6, 31].

Another important immunologic finding is that Treg activity is supposed to be impaired in the periodontal lesions from HTLV-1–positive patients, as suggested by the decreased expression of FOXP3 and IL-10. In accordance with our findings, HTLV-1 symptomatic patients exhibit reduced FOXP3 expression and Treg suppressor function compared with healthy donors, which could explain the marked cellular activation, spontaneous cytokine production, and associated disease development [26, 27]. In periodontal tissues, CD4+CD25+FOXP3+ cells were found in inflammatory infiltrates in periodontal tissues and were associated with high expression of the regulatory cytokines IL-10 and transforming growth factor β [4]. Interestingly, the levels of CCL22, thought to be responsible for Treg chemoattraction to periodontal tissues [4], are similar in the lesions from the CP and HTLV-1 groups, suggesting that a defective function, and not a defective migration, is associated with the impaired Treg activity in the lesions. Conversely, a recent study suggests that the HTLV-1 infection leads to dissemination of Strongyloides stercoralis by augmenting Treg counts, which in turn down-regulate the immune response to the parasite [37]. However, a previous study suggests that the high production of IFN-γ observed in patients coinfected with HTLV-1 and S. stercoralis is responsible for the impaired Th2 response against this helminth [38], reinforcing the complexity of the immunologic networks involved in coinfection processes. Interestingly, because our HTLV group was free of active S. stercoralis infection (data not shown), it is possible to rule out the possible additional influence of this coinfection in our results and to suggest that distinct coinfections (ie, HTLV-1 and periodontitis vs HTLV-1 and strongyloidiasis) may result in distinct immunoregulatory and pathological outcomes. However, further specifically designed studies are required to support deeper discussions in this field.

Another possibility for the increase in periodontitis severity due to HTLV-1 infection, besides the indirect interference in the immune response, is the interaction with the classic periodontopathogens. Indeed, EBV and HSV are thought to mediate overgrowth and increased aggressiveness of periodontopathic bacteria [15, 16]. However, our results demonstrate that both frequency and load of P. gingivalis, T. forsythia, T. denticola, and A. actinomycetemcomitans were similar in the CP and CP/HTLV groups. In addition, the frequency of EBV, CMV, and HSV infection was also similar between HTLV-1–positive and HTLV-1–negative individuals with PD. These findings, considered together with the similar plaque index scores between the CP and CP/HTLV groups, also rule out the possibility that immunologic abnormalities in HTLV-1–infected patients could
interfere with the proper mechanical control of oral microorganisms, which could favor periodontitis development. In addition, it is important to consider that HTLV-1 may also be an important local cofactor in the determination of tissue damage in periodontal lesions. An important point to be considered is the fact that healthy periodontal tissues of HTLV-1–infected patients were not evaluated for the pattern of cytokine expression (because of ethical and technical issues), and further studies are required to determine whether the cytokine imbalance reported in this study is the cause of PD or an adverse effect of HTLV-1 infection.

Increasing evidence suggests that immunosuppression associated with HTLV-1 infection may affect the risk and expression of several other infectious diseases, such as tuberculosis and leprosy [39, 40]. However, distinct from most infectious diseases, in which the intensity of the immune response seems to be associated with the control (at least partial) of the infectious agents, in human and experimental periodontitis even the development of robust responses does not allow the clearance of periodontal infection [13, 14, 41]. Indeed, the ability of the periodontopathogens to attach and colonize the subgingival biofilm, as well as to invade epithelial and endothelial cells, confers an efficient protection that possibly impairs its clearance [42, 43]. Therefore, the hyperinflammatory genotypes may not be an evolutionary advantage in view of the complex host-pathogen interaction of PDs.

In summary, our results show that infection with HTLV-1 presents as an exacerbated inflammatory immune response, possibly associated with an impaired Treg activity, in response to a usual pattern of periodontal infection. The first steps in solving the puzzle of microbial and immunologic contributions to the immunopathogenesis of PD have been achieved, but further studies are required to understand their exact contribution in periodontitis outcome.

Acknowledgments

We thank Cristiane Maria Milanezi for excellent technical assistance. Financial support. This study was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (06/00534-1 and 2007/53940-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (303255/2008-0).

Potential conflicts of interest. All authors: no conflicts.

References

24. Yamano Y, Takenouchi N, Li HC, et al. Virus-induced dysfunction of

